Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6830, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514691

RESUMO

A novel form of biochar was created by dehydration of Date palm kernel with 85% sulfuric acid. It was examined how the newly produced biochar (DPKB-S) affected the aqueous solution's capacity to extract Methylene Blue (MB) dye. The prepared DPKB-S was categorized by BET, BJH, FT-IR, SEM, EDX, DSC, and TGA analyses. The ideal pH for the MB dye adsorption by DPKB-S is 8. With 0.75 g L-1 of DPKB-S and an initial concentration of 50 ppm MB dye, Date Palm Kernel Biochar-Sulfur (DPKB-S) had the highest removal percentage of 100%. The Langmuir and Freundlich isotherm models were used to investigate the collected data. Freundlich model is the model that best covers MB dye adsorption in DPKB-S at low concentrations (0.75-1.25 g L-1) and the Langmuir model at high concentrations (1.5-1.75 g L-1). The Langmuir model maximum adsorption capacity (Qm) of the DPKB-S was 1512.30 mg g-1. Furthermore, a variety of error function models were applied to investigate the isotherm models derived data, including Marquardt's percent standard deviation (MPSD), the sum of absolute errors (EABS), the sum of the errors squared (ERRSQ), root mean square errors (RMS), Chi-square error (X2), the average relative error (ARE), average percent errors (APE), and hybrid error function (HYBRID). Kinetic data were calculated by intraparticle diffusion (IPD), pseudo-second-order (PSO), pseudo-first-order (PFO), and film diffusion (FD) models. A PSO rate model with a strong correlation (R2 = 1.00) largely regulated the adsorption rate. The removal mechanism of MB dye by DPKB-S is based on the principle that these positively charged dyes are attracted by electrostatic attraction forces due to the growth in the number of negatively charged regions at basic pH value. According to the results, DPKB-S shows promise as an affordable and competent adsorbent for the adsorption of MB dye. It can be used frequently without experiencing a discernible decrease in adsorption efficiency.

2.
Sci Rep ; 14(1): 5075, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429365

RESUMO

In the present study, three process parameters optimization were assessed as controlling factors for the biogas and biomethane generation from brown algae Cystoceira myrica as the substrate using RSM for the first time. The biomass amount, Co3O4NPs dosage, and digestion time were assessed and optimized by RSM using Box-Behnken design (BBD) to determine their optimum level. BET, FTIR, TGA, XRD, SEM, XPS, and TEM were applied to illustrate the Co3O4NPs. FTIR and XRD analysis established the formation of Co3O4NPs. The kinetic investigation confirmed that the modified model of Gompertz fit the research results satisfactorily, with R2 ranging between 0.989-0.998 and 0.879-0.979 for biogas and biomethane production, respectively. The results recommended that adding Co3O4NPs at doses of 5 mg/L to C. myrica (1.5 g) significantly increases biogas yield (462 mL/g VS) compared to all other treatments. The maximum biomethane generation (96.85 mL/g VS) was obtained with C. myrica at (0 mg/L) of Co3O4NPs. The impacts of Co3O4NPs dosages on biomethane production, direct electron transfer (DIET) and reactive oxygen species (ROS) were also investigated in detail. The techno-economic study results demonstrate the financial benefits of this strategy for the biogas with the greatest net energy content, which was 2.82 kWh with a net profit of 0.60 USD/m3 of the substrate and was produced using Co3O4NPs (5 mg/L).


Assuntos
Cobalto , Nanopartículas , Óxidos , Alga Marinha , Espécies Reativas de Oxigênio , Biocombustíveis , Elétrons
3.
Sci Rep ; 14(1): 1019, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200036

RESUMO

Ag-La-CaTiO3 was used in place of sacrificial agents to assess the influence of operational factors on hydrogen generation in a photocatalytic water splitting system. After being synthesized, the physicochemical features of this substance were accurately described. Several characterization techniques including UV-Vis spectroscopy, FTIR, XRD, XPS, EDX, SEM, TGA, DRS and BET were applied to study the prepared Ag-La-CaTiO3 photocatalyst. Ag-La-CaTiO3 shows a band in the visible wavelength between 400 and 800 nm at < 560 nm compared to the main CaTiO3 band at 350 nm. Ag 4d5s electrons transition to the conduction band (CB), which is responsible for the absorption band at ~ 560 nm (> 2.21 eV). The effects of catalyst concentration, light intensity, and beginning solution pH on the H2 generation rate may all be evaluated simultaneously using experimental design procedures. Up to a maximum threshold, where a drop in the rate of gas evolution occurs, it was confirmed that the increase in catalyst dose positively affects system productivity. The initial solution pH plays a crucial role in H2 production, and pH = 4 and 10 are the optimum pH with a higher yield of H2 production. The highest total H2 production rate, 6246.09 µmol, was obtained using a catalyst concentration of 700 mg and solution pH equal to 10 under 1200 W Vis lamp for 3 h. For prediction and optimization, a D-Optimal design was applied and the optimal results were pH 4, the catalyst dose of 645.578 mg and 1200 W with H2 production of 6031.11 µmol.

4.
Top Curr Chem (Cham) ; 381(6): 31, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906318

RESUMO

Human existence and societal growth are both dependent on the availability of clean and fresh water. Photocatalysis is a type of artificial photosynthesis that uses environmentally friendly, long-lasting materials to address energy and environmental issues. There is currently a considerable demand for low-cost, high-performance wastewater treatment equipment. By changing the structure, size, and characteristics of nanomaterials, the use of nanotechnology in the field of water filtration has evolved dramatically. Semiconductor-assisted photocatalysis has recently advanced to become among the most promising techniques in the fields of sustainable energy generation and ecological cleanup. It is environmentally beneficial, cost-effective, and strictly linked to the zero waste discharge principle used in industrial effluent treatment. Owing to the reduction or removal of created unwanted byproducts, the green synthesis of photoactive nanomaterial is more beneficial than chemical synthesis approaches. Furthermore, unlike chemical synthesis methods, the green synthesis method does not require the use of expensive, dangerous, or poisonous ingredients, making it a less costly, easy, and environmental method for photocatalyst synthesis. This work focuses on distinct greener synthesis techniques utilized for the production of new photocatalysts, including metals, metal doped-metal oxides, metal oxides, and plasmonic nanostructures, including the application of artificial intelligence and machine learning to the design and selection of an innovative photocatalyst in the context of energy and environmental challenges. A brief overview of the industrial and environmental applications of photocatalysts is also presented. Finally, an overview and recommendations for future research are given to create photocatalytic systems with greatly improved stability and efficiency.


Assuntos
Inteligência Artificial , Nanoestruturas , Humanos , Indústrias , Aprendizado de Máquina , Óxidos
5.
Mar Pollut Bull ; 196: 115692, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37871457

RESUMO

Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were studied in the Nile Delta area of Egypt's southern Mediterranean for their environmental impacts, probable sources, and ecological risk assessment. Using the Gas Chromatography Triple Quadrupole technique, the residues of 16 OCPs and 18 PCBs were determined. The total OCPs content in the seawater and sediment samples ranged from 0.108 to 10.97 µg/L and 0.301 to 5.268 ng/g, respectively, while the PCBs residues had values between 0.808 and 1069.75 µg/L in seawater and between not detected and 575.50 ng/g in sediment samples. The findings of the risk evaluation showed that, except for endosulfan-I, OCPs caused little harm in seawater. However, PCB180, PCB153, PCB156, PCB126 and PCB138 posed a comparatively significant risk. The concentration of DDTs was higher than the effect range low and threshold effect level but remained below the effect range median and probable effect level, posing a minimal ecological concern.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Água/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Medição de Risco , Monitoramento Ambiental/métodos
6.
Environ Sci Pollut Res Int ; 30(26): 69666-69682, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37140854

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) have in recent times shown effective adsorption capability for the confiscation of colour contaminants from aqueous environments (aquatic ecosystems or water bodies) due to the fact that ZnO contains more functional groups. Direct blue 106 (DB106) dye was selected for this present study as a model composite due to its wide range of uses in textiles (cotton and wools), woods, and paper industries, as well as their therapeutic applications, along with its potential for impairments. This study therefore focuses on the use of DB106 dye as a model composite due to its wide range of uses in textiles (cotton and wools), woods, and paper industries, as well as their therapeutic applications and their potential for impairments. Furthermore, the surface functionalization, shape, and composite pore size were revealed by TEM, FTIR, UV, and BET techniques. The current study uses green synthesis method to prepare ZnO-NPs as an adsorbent for the DB106 dye molecules adsorption under various conditions using the batch adsorption process. The adsorption of DB106 dye to the ZnO-NPs biosorbent was detected to be pH-dependent, with optimal adsorption of DB106 (anionic) dye particles observed at pH 7. DB106 dye adsorption to the synthesized ZnO-NPs adsorbent was distinct by means of the linearized Langmuir (LNR) and pseudo-second-order (SO) models, with an estimated maximum adsorption capacity (Qm) of 370.37 mg/g.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Adsorção , Ecossistema , Poluentes Químicos da Água/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Cinética
7.
Polymers (Basel) ; 15(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679187

RESUMO

An important problem for the oil industry is the deposition of paraffin on pipelines during the transit of crude oil and restart processes at low temperature. In this regard, the need for suitable methods of wax deposition has attracted substantial attention. Therefore, pour point depressants (PPDs) are considered a critical processing aid to modify the paraffin crystallization and improve the flow of waxy crude oil. The effect of pendants in comb-type copolymers on the ability of crude oil to flow in the cold is examined in the current study. Such PPDs were first created by the free radical polymerization of maleic anhydride with benzyl oleate to create the poly (benzyl oleate-co-maleic anhydride). The resultant copolymer was then aminated with alkyl amine (stearyl amine) (C18H39N) to form pendant alkyl amine chains. The esterified copolymers were structurally characterized by Fourier Transform Infrared, X-ray diffraction spectral analysis, and scanning electron microscopy. Moreover, the potential interactions between PPD and waxes were investigated by using differential scanning calorimetry, X-ray diffraction, and light microscopy. The obtained PPDs, which are effective at a dose of 2000 ppm, were able to reduce the pour point by up to 3 °C. The viscosity and yield stress of the petroleum waxy crude oil were revealed by rheometer.

8.
Polymers (Basel) ; 14(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015488

RESUMO

Deposition of wax is considered one of the most significant culprits in transporting petroleum crude oils, particularly at low temperatures. When lowering pressure and temperature during the flow of crude oil, the micelle structure of the crude oil is destabilized, allowing oil viscosity to increase and precipitating paraffin (wax) in the well tubulars and pipeline, which increase the complexity of this culprit. These deposited substances can lead to the plugging of production and flow lines, causing a decline in oil production and, subsequently, bulk economic risks for the oil companies. Hence, various approaches have been commercially employed to prevent or remediate wax deposition. However, further research is still going on to develop more efficient techniques. These techniques can be categorized into chemical, physical, and biological ones and hybridized or combined techniques that apply one or more of these techniques. This review focused on all these technologies and the advantages and disadvantages of these technologies.

9.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443690

RESUMO

In this work, different pretreatment methods for algae proved to be very effective in improving cell wall dissociation for biogas production. In this study, the Ulva intestinalis Linnaeus (U. intestinalis) has been exposed to individual pretreatments of (ultrasonic, ozone, microwave, and green synthesized Fe3O4) and in a combination of the first three mentioned pretreatments methods with magnetite (Fe3O4) NPs, (ultrasonic-Fe3O4, ozone-Fe3O4 and microwave-Fe3O4) in different treatment times. Moreover, the green synthesized Fe3O4 NPs has been confirmed by FTIR, TEM, XRD, SEM, EDEX, PSA and BET. The maximum biogas production of 179 and 206 mL/g VS have been attained when U. intestinalis has been treated with ultrasonic only and when combined microwave with Fe3O4 respectively, where sediment were used as inoculum in all pretreatments. From the obtained results, green Fe3O4 NPs enhanced the microwave (MW) treatment to produce a higher biogas yield (206 mL/g VS) when compared with individual MW (84 mL/g VS). The modified Gompertz model (R2 = 0.996 was appropriate model to match the calculated biogas production and could be used more practically to distinguish the kinetics of the anaerobic digestion (AD) period. The assessment of XRD, SEM and FTIR discovered the influence of different treatment techniques on the cell wall structure of U. intestinalis.


Assuntos
Biocombustíveis/análise , Compostos Férricos/química , Nanopartículas/química , Alga Marinha/química , Ulva/química , Anaerobiose , Cinética , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...